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Abstract
The ab initio description of evolutionary processes in extended electron–phonon
systems (polaronic transport, excitonic transfer, etc) up to the present is beyond
numerical accessibility, since it requires the simultaneous knowledge of all
eigenfunctions and eigenvalues. Therefore, usually rough approximations are
made, such as a semiclassical treatment. However, as we have shown in a
recent paper, the full quantum-mechanical treatment drastically deviates from
the semiclassical approximation (even in a qualitative manner).

In the concept discussed here unitary product transformations are
introduced, the constituents of which account for the two antagonistic
tendencies inherent in every coupled electron–phonon Hamiltonian. We apply
our procedure to the concrete case of the dimer–oscillator model by choosing
for each of the antagonistic tendencies respectively a one parameter unitary
operator, such that full analytical diagonalization is reached in the opposing
limits of the Hamiltonian constituents. In the intermediate regime the two
parameters of the transformation are suitably optimized. In this manner the
generation of the full spectrum of eigensolutions involves two analytically fixed
parameters only. The evolutionary behaviour resulting from our procedure
is contrasted with the exact numerical result as well as with the one from
the semiclassical approach and also with a more simple (‘displacive’) unitary
transformation frequently used in the literature.

It is shown that our calculation approaches the exact result in a satisfactory
manner in all intrinsic physical parameter regimes (coupling and transfer) and
overcomes the drastic shortcomings of previous calculations.

1. Introduction

Although the polaron problem, after its initiation by Landau [1] in the 1930s, has already
attracted long lasting research activity, it is still of great current interest. In particular new
interest in polaronic concepts is in the field of superconductivity [2, 3] where Mott and his
followers have advocated a Bose–Einstein condensation of bipolarons [4–6], which would
lead to a Schafroth type of superconductivity [7]. Also, a growing interest is noted in
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biophysics, where e.g. models of excitonic polarons are discussed in the functional modeling
of photosynthetic units [8, 9].

Another application of polaron theory is the problem of the spatial self-localization of
an initially delocalized electronic excitation in crystalline systems. From the observation
of retarded luminescence in rare-gas crystals [10] and in alkali halides [11] we know that
a free exciton generated by optical excitation can get self-trapped at two neighbouring sites
(dimerization) due to its interaction with the lattice vibrations. In this process energy is carried
away from the excitonic system. This counteracts the excitonic transfer between lattice sites,
which tends to delocalize the exciton.

Notwithstanding the long history of polaronic research the handling of the time evolution
of polaronic exciton systems is still not at a very satisfactory stage. Computational ab initio
calculations of realistic systems are, even today, beyond numerical accessibility.

In earlier work (e.g. references [12, 13]) on the temporal evolution of exciton(electron)–
phonon systems, a procedure was usually employed which involved elements of a
phenomenological nature. For example, a semiclassical approach was taken in which the
phonon system was treated classically. As we have shown in a previous paper [14], this
type of approximation may lead to results that not only show quantitative but even qualitative
deviations from the exact solution. On the other hand, a fully quantum mechanical treatment
numerically is only possible in simple cases like the two-site model (1 exciton, 1 oscillator,
2 sites).

One possibility to overcome these difficulties is to subject the coupled system to a
unitary transformation which approximately diagonalizes the Hamiltonian. In this manner
the temporal evolution becomes tractable in the transformed space [15, 16].

To promote the lucidity of our calculations we briefly explain the philosophy of this
method. If we consider an observable A, the temporal evolution of which we desire to know
after an initial state |�(0)〉 has been fixed, we have to calculate the Heisenberg evolution

A(t) = 〈�(0)| exp(iHt)A exp(−iHt)|�(0)〉 (1)

where H is the Hamiltonian of the system and where the energy unit is taken such that h̄ = 1.
If {|φm〉} is the eigenbase of the Hamiltonian,

H |φm〉 = Em|φm〉. (2)

Then there exists a unitary transformation (operator U ) such that the eigenbase {|φm〉} may be
generated from an arbitrary complete orthonormal base (CON base) {|φ(0)m 〉} such that

|φm〉 = U |φ(0)m 〉 (3)

(‘unitary generation of the eigenbase’). This formula may be considered as the fundamental
formula of our approach. The requirement that the states generated by (3) form an eigenbase
of the given Hamiltonian H is equivalent to the condition that the transformed Hamiltonian

H̃ = U †HU (4)

is diagonal with respect to the given CON base {|φ(0)m 〉}, U †HU |φ(0)m 〉 = Em|φ(0)m 〉.
The basic properties of U are given by U †U = 1, U−1 = U and by the conservation of

the scalar product 〈φ | ψ〉 = 〈Uφ | Uψ〉, which includes the conservation of orthonormality,
〈φm | φn〉 = δmn = 〈Uφm | Uφn〉. For further details about unitary transformations see [17].
If we know the operator U the eigenvalue Em is given by

Em = 〈φ(0)m |U †HU |φ(0)m 〉 (5)

and the projection of the initial state |�(0)〉 onto the eigenbase reads

|�(0)〉 =
∑
m

|φm〉〈φm | �(0)〉 =
∑
m

|Uφm〉〈Uφm | �(0)〉. (6)
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Then the temporal evolution of the expectation value assumes the form

A(t) =
∑
m,n

〈�(0) | φm〉〈φm| exp
(
i(Em − En)t

)
A|φn〉〈φn | �(0)〉 (7)

and by means of (3):

A(t) =
∑
m,n

〈U�(0) | φ(0)m 〉〈φ(0)m | exp
(
i(Em − En)t

)
U †AU |φ(0)n 〉〈φ(0)n | U�(0)〉. (8)

The favourable features of this expression are as follows:

(a) One may choose a base system {|φ(0)m 〉} which is easily managable, e.g. an eigenbase of
some ‘undisturbed’ Hamiltonian H0. (This will be done in the following.)

(b) Having made this choice, all matrix elements appearing in (7) are easily calculated, if
the application of the unitary operator U onto the base vectors |φ(0)m 〉 is known, and the
eigenvalues Em appearing in (7) are also calculated in the form of a matrix element, i.e.
the one given by (5).

The only quantity which remains to be fixed is the unitary operator U , which generates
the eigenvectors |φm〉 from |φ(0)m 〉 via the ‘rotation’ U |φ(0)m 〉 in Hilbert space. Naturally, in the
systems we are considering it is impossible to find the exact analytic form of U . But due to
the orthonormality-preserving property of any unitary operator, also simpler unitary operators
may be invoked, which simultaneously generate a full approximate eigenbase. This is the aim
of the present paper. We propose and check unitary operators, which are tailored in such a
way that they incorporate the basic antagonistic tendencies of any exciton(electron)–phonon
system: one tendency to localize the electron (‘polaronic’ effect) and another tendency which
tries to delocalize the exciton (i.e. to make it freely movable). We thus will write U as a
product of two operators, one for each of the two tendencies. We demonstrate this method for
the example of the two-site model.

One of the two operator factors will always be taken as a ‘displacement operator’, which
accounts for the self-trapping interaction of the electron (exciton) with the oscillatory system.
This type of transformation has been frequently employed, and there is a rich literature on
it. For example, we refer to the paper of Silbey and Harris [18], where a displacive type
of transformation has been used to explain the tunneling breakdown in the case of Ohmic
dissipation. As will be seen below this displacive operator-factor alone is not sufficient for
diagonalizing the problem in the opposing limits. Rather it will be seen that sometimes this
transformation leads to results which are even worse than the semiclassical one. Nevertheless,
this transformation has been frequently used (see e.g. Steib et al [19]).

The second factor, in contrast, accounts for the delocalizing effect due to the excitonic
transfer. As a second factor in the literature one has to choose an operator of ‘reflective’ [16]
or of ‘squeezing’ [20] type. The choice of a ‘reflective’ partner will be discussed later in this
work, and it turns out that it displays the unpleasant feature that there is an unphysical abrupt
change of the transformational parameters in the critical transfer regime. We also will discuss
shortly the ‘squeezing (antisqueezing)’. This choice is the least suitable. We therefore will
introduce for the partner of the displacive operator a new operator not discussed in literature
so far, which we denote as an ‘anticrossing’ operator, and which will turn out to be overall the
best choice.

In section 2 we present our model and exploit the reflective symmetry of the Hamiltonian
to decouple the evolutions of the even and odd parity subspaces. In section 3 we introduce the
reflective–displacive (RD) and displacive–anticrossing (DA) transformations and apply them to
our model. In section 4 the semiclassical approximation is discussed. In section 5 we discuss
the so-called Debye–Waller anomaly. In section 6 we present the numerical results of our
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calculations and compare them with the exact and the semiclassical evolution. In section 7 we
draw our conclusions. In the appendix we discuss the displacive-antisqueezing transformation
as an alternative to the RD and the DA transformation.

2. The model

2.1. Hamiltonian of the system and initial condition

We consider the standard symmetric dimer consisting of two excitonic (electronic) sites,
coupled to a single harmonic oscillator [14]. The Hamiltonian reads (h̄ = 1)

H = 1
2 (P

2 +Q2 − 1)− T (|l〉〈r| + |r〉〈l|) +DQ(|l〉〈l| − |r〉〈r|) (9)

where |l〉 and |r〉 are the site states of the exciton, and the frequency of the oscillator has been
chosen as the energy measure of the system, i.e., it is taken as unity. The zero point energy has
been subtracted from H . To assert inversion symmetry we require |r〉 to be the mirror image
of |l〉 and Q to be an odd coordinate such that RQQ = −QRQ (RQ: reflection operator in
Q-subspace). Without loss of generality we assume T to be positive. As an initial condition
we assume that at time t = 0 an exciton is created in the left-site state, keeping the oscillator
in its unperturbed ground state |φ(0)0 〉:

|�(t = 0)〉 = |l〉|φ(0)0 〉. (10)

The aim of this paper is to determine the temporal evolution of the excitonic occupation
probability difference

z(t) = 〈�(t)| (|l〉〈l| − |r〉〈r|) |�(t)〉 (11)

for this initial condition.

2.2. The Fulton–Gouterman transcription

Since the Hamiltonian (9) is invariant with respect to inversion of the total (exciton + oscillator)
system, the eigenstates must display a definite parity p = ±1, i.e., they must be of the general
Wigner form

|ψ(p)n 〉 = 1√
2

(|l〉 + p|r〉RQ
) |φ(p)n 〉 (12)

where |r〉 is assumed to be the mirror image of |l〉,RQ is the inversion operator of the oscillatory
system, and |φ(p)n 〉 are states in the subspace of the oscillator. The oscillatory ‘companion
functions’ |φ(p)n 〉 must obey the Fulton–Gouterman (FG) equations [20–24]

H
(p)

FG |φ(p)n 〉 := (
1
2 (P

2 +Q2 − 1)− pTRQ +DQ
) |φ(p)n 〉 = E(p)n |φ(p)n 〉. (13)

Each FG HamiltonianH(p)FG , p = ±1, operates only in one of the two parity subspaces, whence
the temporal evolutions in the two subspaces are completely decoupled:

|�(t)〉 = 1√
2

∑
p

(|l〉 + p|r〉RQ
) |�(p)(t)〉 (14)

where

|�(p)(t)〉 = 1√
2

(〈l| + p〈r|RQ
) |�(t)〉

= exp(−iH(p)FG t)|�(p)(0)〉 =
∑
n

c(p)n |φ(p)n 〉 exp(−iE(p)n t) (15)

c(p)n = 〈φ(p)n | �(p)(0)〉. (16)
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Our initial state (10) then corresponds to the state

|�(p)(0)〉 = 1√
2
|φ(0)0 〉 (17)

for p = ±1.
Under these premises we now have to transcribe the expectation value (11) for the

occupational probability difference. Inserting (14)–(17) in (11) we find

z(t) =
∑
m,n

〈φ(0)0 | φ(+)m 〉〈φ(+)m | φ(−)n 〉〈φ(−)n | φ(0)0 〉 cos
(
(E(+)m − E(−)n )t

)
(18)

which is the concretization of formula (7) to our problem.

2.3. The specification of the unitary transformation concept to our model

We now apply the concept of a unitary generation of the eigenstates to the Fulton–Gouterman
equations (13); we generate its eigenfunctions |φ(p)n 〉, p = ±1, for each parity separately, as
described in section 1,

|φ(p)n 〉 = U(p)|φ(0)n 〉 p = ±1 (19)

where {|φ(0)n 〉} now is the eigenbase of the undisturbed harmonic oscillator. Expression (18)
then assumes the form

z(t) =
∑
m,n

〈φ(0)0 |U(+)|φ(0)m 〉〈φ(0)m |U †
(+)U(−)|φ(0)n 〉〈φ(0)n |U †

(−)|φ(0)0 〉 cos
(
(E(+)m − E(−)n )t

)
(20)

where

E(p)m = 〈φ(p)m |H(p)FG |φ(p)m 〉 = 〈φ(0)m |U †
(p)H

(p)

FG U(p)|φ(0)m 〉. (21)

We emphasize that bothH(p)FG and the unitary operatorsU(p) to be introduced are acting (due to
the FG transformation) in the oscillator subspace. But naturally, all formulae retrospectively
may be written in original product Hilbert space. Thus, the unitary operator Û in the original
space must be taken as

Û = Û(+)Û(−) (22)

where

Û(p) = 1√
2
(|l〉 + p|r〉RQ)U(p) 1√

2
(〈l| + p〈r|RQ). (23)

For the calculation this return to the original space is not needed (see expression (20)).

3. Unitary product transformations

3.1. RD transformation

3.1.1. Definition In previous work [20], it has been shown that there exists a specific product
transformation which has the quality of reproducing the ground state properties over the full
combination range of the basic parametersD (coupling) and T (transfer). Recently [25] it has
been shown that this transformation is not only adequate for the ground state, but that it also
yields the analytically correct behaviour for the full eigenvalue spectrum in the two opposite
limiting cases

(i) D → 0, T arbitrary,
(ii) D arbitrary, T → 0,
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which is tantamount to a full diagonalization of the Hamiltonian in these limits. Adopting
respectively the limiting analytic forms of the parameters inherent in the transformation
operators and comparing the approximate eigenvalues with the numerically exact ones it is
found that also in intermediate parameter ranges the approximation remains remarkably good.

The transformation considered is of the form

Urd = Ur(β)Ud(δ) (24)

where β and δ, which are taken as real quantities, constitute the parameters of the
transformation. The first of the two transformations, Ur , is given by

Ur(β) = eSr = cos(βQ) + sin(βQ)RQ (25)

Sr = −S†
r = βQRQ. (26)

It is of reflective nature and has the properties

Tr : Q = U †
r QUr = cos(2βQ)Q + sin(2βQ)QRQ (27)

Tr : P = U †
r PUr = cos(2βQ)P + sin(2βQ)PRQ + iβ sin(2βQ)− iβ cos(2βQ)RQ (28)

Tr : RQ = U †
r RQUr = cos(2βQ)RQ − sin(2βQ) (29)

Ur |φ(Q)〉 = cos(βQ)|φ(Q)〉 + sin(βQ)|φ(−Q)〉. (30)

This transformation supplements an oscillatory wavefunction by a diminished mirror image
of itself (see figure 1).

Q

φ
(Q

)

−→

Q

U
r
φ
(Q

)

Figure 1. The reflective transformation Ur .

The second transformation, Ud , is given by

Ud(δ) = eSd (31)

Sd = −S†
d = iδP . (32)

It is of displacive type and has the properties

Td : Q = U †
dQUd = Q− δ (33)

Td : P = U †
d PUd = P (34)

Td : RQ = U †
d RQUd = e−2iδPRQ (35)

Ud |φ(Q)〉 = |φ(Q + δ)〉. (36)

This transformation displaces the oscillatory wavefunction from its original position (see
figure 2).

We note that this transformation has been frequently used in literature and is known as the
‘Lang–Firsov’ transformation. The special form Ud(δ = D) of this transformation, i.e. the
one choosing for the displacement parameter δ the fixed, non-optimized value δ = D, has been
used in the work of Steib et al [19]. We will denote this specific transformation as the ‘simple
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Q

φ
(Q

)

−→

Q

U
d
φ
(Q

)

Figure 2. The displacive transformation Ud .

displacement transformationD’ and contrast the results pertaining to this transformation with
those derived from our product transformations RD and DA (see later).

It should be noted that the RD transformation (24) is equivalent to the Fröhlich
transformation for small values of β and δ, but has the advantage that it can be written down
in closed form [24].

The transformed Hamiltonian reads

H̃
(p)

FG = T : H(p)FG = U †H
(p)

FG U

= 1
2 [(Q− δ)2 + P 2 − 1 − 2iβP e−2iδPRQ + β2]

+D cos
(
2β(Q− δ))(Q− δ) +D sin

(
2β(Q− δ))(Q− δ)e−2iδPRQ

−pT cos
(
2β(Q− δ))e−2iδPRQ + pT sin

(
2β(Q− δ)). (37)

3.1.2. Contrast to squeezing-type transformations We mention that in the literature another
product transformation has sometimes has used to treat our archetype model, which applied
to the original Hamiltonian (9) is a product of a special Lang–Firsov transformation and an
antisqueezing transformation in the exciton–phonon space. If we translate this transformation
into the FG picture it amounts to a product of a displacive and an antisqueezing operator. We
will contrast it with the one chosen by us and show that it only achieves diagonalization in the
weak-coupling limit and also only for the ground state of the system (see appendix).

3.1.3. The small-coupling and the large-transfer cases For D = 0 the Hamiltonian is
diagonal, since the eigenfunctions of P 2 +Q2 are also those of RQ. When we expand H̃ (p)FG up
to the linear terms in D, β, δ, we obtain

H̃
(p)

FG = 1
2 (P

2 +Q2 − 1) + (D − δ + 2pTβ)Q + i (2δpT − β) PRQ − pTRQ
+O(δ2, β2, βδ, δD, βD) +O(δ2, β2)T . (38)

The linear terms vanish if

δ = D

1 − 4T 2
β = 2pTD

1 − 4T 2
(39)

which amounts to the Fröhlich condition

[H1, Sd + Sr ] = −W1 (40)

where

H1 = 1
2 (P

2 +Q2 − 1)− pTRQ (41)

W1 = DQ. (42)
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The diagonal part of H̃ (p)FG is then correct up to second order inclusive and the energy calculation
corresponds to second-order perturbation theory:

E(p)m = m− (−1)mpT +
(
(−1)m(2m + 1)pT − 1

2

) D2

1 − 4T 2
+O(D3) (43)

which is correct to orderD2 inclusively. This diagonalization holds in the limiting case of small
transfer (D  1) for all states (not only the ground state) and for all values of T except near the
point T = 1

2 where the free exciton is in resonance with the oscillator. In the small-coupling
regime the RD transformation is therefore equivalent to second-order standard perturbation
theory. In particular it is worth noting that the exact perturbative small coupling limit, which
corresponds to the Fröhlich condition (40) and to the results (39) cannot be established by
a displacive transformation alone, since the latter would require β = 0 in contradiction to
result (39).

From (37) we observe that for large transfer (T � 1) the conditionD  1 for the validity
of the parameter choice (39) may be relaxed to D2  T . In this case, the transformation
parameters take the approximate values

δ = − D

4T 2
β = − D

2pT
(44)

and the energy eigenvalues, up to order D2/T inclusively, read

E(p)m = m− (−1)mpT − (−1)m(m + 1
2 )D

2

2pT
+ [1 − (4m + 2)D]

D2

8T 2
+O

(
D

(
D

T

)3)
. (45)

3.1.4. The small-transfer case (coupling D arbitrary) The small transfer case (T  1) was
considered by one of us in reference [26]. The method employed there is equivalent to setting
δ = D and varying only β. In this case the ground state energy is minimized for

δ = D β = 2pTD

4D4 + 6D2 + 1
(46)

and in the two limiting cases D  1 and D � 1 this parameter choice also strongly reduces
the non-diagonality of the Hamiltonian. The analytically exact second order result in this limit
(T  1) was found in a perturbative manner in reference [26] and in an alternative way by
Rapp [25]. For the ground state it is of the form

E
(p)

0 = − 1
2D

2 − e−D2
pT − e−2D2

[Ei(2D2)− γ − log(2D2)]T 2 +O(T 3), (47)

where γ = 0.577215 . . . denotes Euler’s constant (see reference [27], p xxx) and

Ei(z) = γ + log z +
∞∑
n=1

zn

n n!
(48)

is the exponential-integral function (see reference [27], p 935). For elevated states the
perturbation results may be found in a similar manner.

We now intend to show that our unitary transformation has the capacity to reproduce
the analytical result in both the small (D  1) and large (D � 1) coupling regime, if the
parameters δ, β are chosen in the form (46).

We first consider the case D  1, such that now both D  1 and T  1. Then
β = 2pTD + O(T 3), which agrees with (39). The perturbative ground state energy (47) in
this limit (T  1, D  1) agrees with (43) up to second order in D and T inclusive.

In the strong coupling limit (D � 1), diagonalization of all states up to order T 2/D2 is
obtained for β = 1

2pT/D
3. The expression for the ground state eigenvalue reads

E
(p)

0 = 1
2 − 1

2D
2 − e−D2

pT − T 2

2D2
+O(T 2/D4, T 3). (49)
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This result coincides with (47) up to second order in D−1 and T , as can be seen using the
asymptotic representation

Ei(z) = ez

z
[1 +O(z−1)]. (50)

3.1.5. The general case (D, T arbitrary) In the general case we calculate the expectation
value of H̃ (p)FG for the eigenstates |φ(0)m 〉 of the unperturbed oscillator as a function of β and δ:

E(p)m (β, δ) = 〈m|H̃ (p)FG |m〉 = m + 1
2 (β

2 + δ2)

−(−1)mβδ exp(−δ2)
[
L(1)m (2δ

2) + L(1)m−1(2δ
2)

]
+Dβ exp(−β2) sin(2βδ)

[
L(1)m (2β

2) + L(1)m−1(2β
2)

]
−Dδ exp(−β2) cos(2βδ)L(0)m (2β

2)

−pT exp(−β2) sin(2βδ)L(0)m (2β
2)

−(−1)mpT exp
(−(β2 + δ2)

)
L(0)m

(
2(β2 + δ2)

)
+(−1)mDβ exp

(−(β2 + δ2)
)[
L(1)m

(
2(β2 + δ2)

)
+L(1)m−1

(
2(β2 + δ2)

)]
(51)

where L(k)m denote the generalized Laguerre polynomials. In principle the transformational
parameters β and δ could be determined by numerical optimization. But since we desire to fix
δ and β uniquely in such a way that they are the same for all eigenstates, we adopt a different
approach. We consider the two analytical expressions (39) and (46), which are valid in the
limiting cases T → ∞ and T → 0 respectively, and choose the former for all T above a
critical value Tc, and the latter for T below Tc. For a given value of D we define the accurate
position of Tc as that of T where both parameters switch their sign if in each of the parity cases
the lowest state is minimized. For smallD values (D < 1

2 ) it is given by Tc ≈ 1
2 , and for higher

D values (D > 1) it increases (D = 0.5: Tc ≈ 0.7; D = 1: Tc ≈ 1.0; D = 2: Tc ≈ 2.7;
D = 4: Tc ≈ 8). For calculational purposes the abruptness of the sign switches at Tc has been
smoothed somewhat by using the following interpolating expressions for β and δ:

β = pTD
{

1 − 4T 2

ε2 + (1 − 4T 2)2

[
1 + tanh

(
γ (T − Tc)

)]
+

1

4D4 + 6D2 + 1

[
1 − tanh

(
γ (T − Tc)

)]}
(52)

δ = D

2

{
1 − 4T 2

ε2 + (1 − 4T 2)2

[
1 + tanh

(
γ (T − Tc)

)]
+

[
1 − tanh

(
γ (T − Tc)

)]}
(53)

γ = 20

D
ε = 0.1 Tc = 1

2 (D
2 + 1). (54)

Figure 3 demonstrates the accuracy of the eigenvalues generated via our unitary product
transformation for D = 0.25 as a function of T , as compared with the numerically exact
curves. We note the discrepancies in the critical T regime around Tc ≈ 0.5; however, at
some appropriate distance from Tc above and below Tc the approximate eigenvalues smoothly
approach the exact ones simultaneously for all quantum numbers. We find a similar situation
for other D-values. We refrain therefore from illustrating the behaviour in other cases.

After the transformational parameter values β(p), δ(p) have been obtained for each parity in
the way described above, we have to insert the operatorUrd(β(±), δ(±)) = Ur(β(±))Ud(δ(±)) in
expression (20), which allows us to calculate the time evolution of the occupational probability
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Figure 3. Comparison of the eigenvalues generated via our RD transformation as a function of T
with the numerically exact curves for D = 0.25 and p = +1. Solid lines: exact numerical
diagonalization, dashed lines: RD result.

difference. (In place of the parity characterization U± we denote it via superscripts at the
parameters β(±), δ(±).)

The results of these calculations are presented in section 6.

3.2. The DA transformation

3.2.1. Motivation In the previous section it was shown that the RD transformation in the small
coupling regime is able to diagonalize the Hamiltonian HFG with high accuracy, except for a
small range of the transfer parameter T near the critical value Tc. The reason for this failure
near Tc can be seen from the behaviour of the exact eigenenergies for D = 0: At T = 0.5
the energies of neighbouring states with even and odd oscillatory quantum number n become
equal. If now a small coupling D is switched on, the degeneracy is removed. These avoided
crossings are clearly visible from the solid lines in figure 3, which show the dependency
of the energy eigenvalues as functions of the transfer T for D = 0.5. For this reason the
mutual correspondence between the oscillatory states |n〉 := |φ(0)n 〉 and the approximate
eigenstates |φ(p)n 〉 of HFG is different in the two limiting cases T → 0 and T → ∞. For
example, in the odd parity subspace p = −1, for T → 0 the oscillatory state |1〉 is mapped
by Urd onto the first excited state |φ(−1)

1 〉 of HFG, for T → ∞ onto the ground state |φ(−1)
0 〉.

If T increases continually from 0 to ∞, the mutual correspondence has to change abruptly at
some value of T . This is the reason for the jump of the transformation parameters β and δ
at the critical transfer Tc. Since in our RD transformation the parameters β(p) and δ(p) both
have been taken as smooth functions of T in the critical region, the energy values from our
transformation must cross the gap between the exact values and therefore cannot reproduce
the exact values.

In order to overcome this shortcoming, we need a transformation Ua with the following
properties:

• For T → 0, Ua approaches the identity transformation.
• For T → ∞, Ua exchanges neighbouring states with each other, namely |1〉 with |2〉, |3〉



Quantum dynamics of the prototype polaron model 3307

with |4〉, etc for even parity, and |0〉 with |1〉, |2〉 with |3〉, etc for odd parity.

A transformation fulfilling these two conditions will be called an anticrossing transformation
in this paper. In figure 4 the energetic effect of an anticrossing transformation is vizualized.

E

T

Figure 4. Illustration of the energetic effect of an anticrossing transformation.

3.2.2. Definition According to our concept (given in the introduction) we want to have
approximately

|φ(p)n 〉 ≡ Uda|φ(0)n 〉 ≡ Ud(δ)Ua(α)|φ(0)n 〉 (55)

where the anticrossing operator is taken as

Ua(α) = exp Sa(α) Sa(α) = b(1 + pRQ)α(b
†b)− α(b†b)(1 + pRQ)b

† (56)

and α(x) is a real-valued function of one variable. Application of Ua to the oscillatory states
yields

• for even parity:

Sa|2n〉 = λn|2n− 1〉 (57)

Sa|2n− 1〉 = −λn|2n〉 (58)

Ua|2n〉 = cos λn|2n〉 + sin λn|2n− 1〉 (59)

Ua|2n− 1〉 = cos λn|2n− 1〉 − sin λn|2n〉 (60)

where λn = 2α(2n)
√

2n;
• for odd parity:

Sa|2n〉 = −λn|2n + 1〉 (61)

Sa|2n + 1〉 = λn|2n〉 (62)

Ua|2n〉 = cos λn|2n〉 − sin λn|2n + 1〉 (63)

Ua|2n + 1〉 = cos λn|2n + 1〉 + sin λn|2n〉 (64)

where λn = 2α(2n + 1)
√

2n + 1;
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i.e., Ua gives a rotation in the subspaces spanned by two neighbouring oscillatory states, as
required above for an anticrossing transformation. This is illustrated in figure 4 for states |1〉
and |2〉 in the case of odd parity.

From equations (57) to (64) it is obvious that only the values of α(x) at x = 2n (for even
parity) or at x = 2n + 1 (for odd parity) are relevant. These function values, or alternatively
the rotation angles λn, are free parameters which can be chosen in a way that diagonalizes
the Hamiltonian as much as possible. This is done by requiring that the non-diagonal matrix
elements of the transformed Hamiltonian H̃ (p)FG = U

†
daH

(p)

FG Uda between two neighbouring
states vanish, i.e. that we have for even parity

〈2n− 1|H̃ (+1)
FG |2n〉 = 0 (65)

and for odd parity

〈2n + 1|H̃ (−1)
FG |2n〉 = 0. (66)

3.2.3. The small-coupling and the large-transfer cases When in (56) α is chosen independent
of n and the creation and annihilation operators b† and b are expressed in terms of the position
and momentum operatorsQ and P , we obtain

Sa(α) = i
√

2αP +
√

2αpQRQ (67)

and

Sd(δ) + Sa(α) = δ +
√

2α)P +
√

2αpQRQ. (68)

Since the latter expression has the same form as Sr + Sd in the case of the RD transformation
(linear in P and Q), the Fröhlich condition (40) is fulfilled by the DA transformation for the
parameter choice

δda = D

1 + 2T
αda =

√
2TD

1 − 4T 2
. (69)

Therefore the DA transformation, like the RD transformation, diagonalizes the Hamiltonian
in the limiting cases of small coupling or large transfer and is equivalent to second-order
perturbation theory.

3.2.4. The small-transfer case In the case of vanishing transfer (T = 0) the system is
diagonalized exactly for δ = D and αn = 0, i.e., the DA transformation reduces to a simple
displacive transformation. For small but finite values of T we have no analytical results, but
the exact diagonalization for T = 0 means that for T → 0 the approximated eigenstates
and energies must approach the exact ones. Also, for large values of the coupling D the
effective strength of the transfer is reduced, so that the system is even closer to the exactly
solvable case T = 0; whereas for small values ofD the Fröhlich condition can be fulfilled, as
shown above. Therefore in both cases the DA transformation can be expected to yield good
approximations for the energy eigenstates and eigenvalues.

3.2.5. The general case In the general case we face the problem of finding values for the
transformational parameters δ and α(n) which yield a good approximation for all eigenstates
of the Hamiltonian. In the case of the RD transformation this aim was reached by interpolating
between the analytical expressions for the small and large transfer cases. For the DA
transformation we have no analytical result in the small transfer case. On the other hand, for
given parityp and any fixed value of δ the optimal values of the anticrossing parametersα(n) are
uniquely determined by equations (65) and (66) for even or odd parity, respectively, separately
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for each pair of neighbouring states. Only the displacive parameter δ has to be chosen the
same for all states. In the present paper this is done by minimizing the ground state energy of
the transformed Hamiltonian. In contrast to the case of the RD transformation, this results in
a smooth dependency of δ on the system parameters T and D for each parity p.

The parameter values obtained in this way are then used to calculate the temporal evolution
by inserting the operators Uda(α(±), δ(±)) in (20), analogous to the RD transformation.

Figure 5 shows the T -dependence of the DA approximation of the eigenvalues for
D = 0.25 and demonstrates the efficiency of the transformation as well as the improvement
beyond the RD approximation (see figure 3). Further figures of the RD and DA results are
given later.
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Figure 5. Comparison of the eigenvalues generated via our DA transformation as a function of T
with the numerically exact curves for D = 0.25 and p = +1. Solid lines: exact numerical
diagonalization, dashed lines: DA result (almost identical to exact result).

4. The semiclassical approximation

Since we intend to contrast our present results with those of the semiclassical approximation, we
briefly review that now. The semiclassical approximation has been considered by Holstein [21],
by Kenkre and Campbell [28], and by Esser and Schanz [13] and has been contrasted to the
exact numerical solution in our earlier paper [14]. It is obtained by requiring a product form
of the wave function at all times:

|�(t)〉 ≡ e−iHt |�(0)〉 ≈ |�exc(t)〉|�osc(t)〉 (70)

where

|�exc(t)〉 = gl(t)|l〉 + gr(t)|r〉 |gl|2 + |gr |2 = 1. (71)

We introduce the three Bloch operators

x̂(t) = [|l〉〈r| + |r〉〈l|]
t

(72)

ŷ(t) = i
[|r〉〈l| − |l〉〈r|]

t
(73)

ẑ(t) = [|l〉〈l| − |r〉〈r|]
t
. (74)
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The Heisenberg equations of motion for the momentum operator P̂ , the position operator Q̂,
and the three Bloch operators may be simplified, if the expectation values of products of
operators are replaced by the products of the expectation values. Then a closed systems of
differential equations is obtained for the expectation values of P̂ , Q̂, x̂, ŷ, and ẑ:

ẋ = −2DQy (75)

ẏ = 2(T z +DQx) (76)

ż = −2Ty (77)

Q̇ = P (78)

Ṗ = −(Q +Dz). (79)

We do not go into details of this approach, but refer to an overview given in our previous
paper [14].

A remarkable feature of the semiclassical model is the contrast between the symmetry
breaking of the ground state, which occurs for D2/T > 1 (see [13]) and the self-trapping of
the temporal evolution, which occurs only forD2/T > 2 in the small transfer limit (see [28]).

5. Debye–Waller peculiarity

In the expansion of the energy eigenvalues with respect to the transfer parameterT a remarkable
peculiarity was found in reference [26]: The Debye–Waller screening factor exp(−D2) is
absent in all terms of even power in T . This constitutes a rigorous analytic result. Since
the even power terms in T are independent of the parity p (see (47)), the energy differences
between corresponding states of different parity and the same quantum number are not affected
by the Debye–Waller peculiarity. These results are discussed in further detail by Firsov et al
in [29] and [30].

In this context a glance at other types of unitary transformations is fruitful. In particular
we consider a specific alternative product transformation, which has been used in the literature.
This transformation also involves a product of unitary operators, but in place of our reflective
factor an antisqueezing type of unitary factor is employed. In the appendix it is shown that this
‘displacive-antisqueezing’ transformation fails to reproduce the Debye–Waller peculiarity. It
shows a Debye–Waller screening factor in all powers of T .

6. Numerical results

In our present study the motivation for choosing the two-site model has been the possibility
of calculating the exact numerical solution, which may thus serve as a benchmark for the
unitary transformation method introduced here. For the exact numerical eigensolution the
FG Hamiltonian (13) is taken in its matrix representation with respect to the unperturbed
eigenstates |φ(0)n 〉 of the oscillator, and this matrix subsequently is diagonalized numerically.
Since the number of oscillatory states is infinite, only the first N of them were used, where N
was chosen so large that the results are not changed by a further increase of N . The temporal
evolution of the system then is calculated by projecting the initial state onto the numerically
obtained eigenstates of H(p)FG (see (20)).

In order to judge the quality of the approximate diagonalization obtained by our RD and
DA transformations, in this section the exact numerical results for the energy eigenvalues are
contrasted with

(a) the results of the RD ansatz (section 3.1)
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(b) the results of the DA ansatz (section 3.2)
(c) the results of a simple displacive ansatz, as it is used by Steib et al [19]

as functions of the coupling D for two values of the transfer T .
For the temporal evolution of the occupational probability difference quantity z(t)

(definition see expression (11)) we respectively choose a large and a small value of the
Hamiltonian parameters D and T and provide the combinations small–small, large–large,
small–large and large–small. We contrast the exact numerical results to

(a) the results of the RD ansatz (section 3.1)
(b) the results of the DA ansatz (section 3.2)
(c) the results of the semiclassical approximation (section 4)
(d) the results of the simple displacive ansatz [19].

To save space, only the most instructive of the above mentioned approximations are shown for
each parameter combination.

6.1. Small transfer regime

6.1.1. Energy curves In the small transfer regime (T = 0.25) the simple displacive
transformation (see e.g. Steib et al [19]) with the displacement parameter fixed at δ = D

yields almost quantitatively correct values of the eigenenergies both for the low-lying levels
(n < 15, see figure 6) and for high levels (n ≈ 100, figure 7). This was to be expected because
for T = 0 the displacive transformation exactly diagonalizes the Hamiltonian, as mentioned
in section 3.2.
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Figure 6. Comparison of the eigenvalues generated via the purely displacive transformation as a
function of D with the numerically exact curves for T = 0.25 and p = +1. The two results are
indiscernible on the scale of this figure.

The DA results show slight deviations from the exact values for small n (figure 8). For
high n the deviations are larger (these are not shown here). At first this seems surprising
since the DA transformation contains the displacive one as a special case. But it should be
remembered from section 3.2 that the displacement parameter δ for the DA transformation was
obtained by minimizing the ground state energy, which does not necessarily lead to a value
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Figure 7. Comparison of the eigenvalues generated via the purely displacive transformation as a
function of D with the numerically exact curves for T = 0.25 and p = +1. The two results are
indiscernible on the scale of this figure.
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Figure 8. Comparison of the eigenvalues generated via the DA transformation as a function of D
with the numerically exact curves for T = 0.25 and p = +1. Solid lines: exact numerical
diagonalization, dashed lines: DA result.

that is optimal for higher states. Therefore the deviations in figure 8 are not a sign of a defect
of the DA transformation itself, but are caused by an energetically non-optimal choice of the
parameter values.

The results of the RD transformation show deviations which are somewhat larger than in
the case of the DA transformation, (these are not shown here). Also the RD transformation
contains the displacive transformation as a limit (for δ = D, β = 0), so again an optimization
of δ, β with respect to the ground state is no good overall optimization.
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Figure 9. Occupation probability difference as a function of time. Comparison of the exact
numerical solution (solid line) with the DA result (dashed line). Parameter values: coupling
D = 0.5, transfer T = 0.25.
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Figure 10. Occupation probability difference as a function of time. Comparison of the exact
numerical solution (solid line) with the purely displacive result (dashed line). Parameter values:
coupling D = 0.5, transfer T = 0.25.

6.1.2. Temporal evolution For T = 0.25 and D = 0.5 (weak coupling), the occupational
difference z(t) is shown for the DA transformation in figure 9, for the purely displacive
transformation in figure 10, and for the semiclassical approximation in figure 11. In each
case the approximated result is drawn with dashed lines, together with the numerically exact
result, which is drawn with solid lines. The result of the RD transformation is omitted. It is
very similar to the purely displacive one.

The most remarkable feature of these curves is that the DA evolution is considerably
more accurate than the evolution of the purely displacive transformation (compare figures 9
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Figure 11. Occupation probability difference as a function of time. Comparison of the exact
numerical solution (solid line) with the semiclassical result (dashed line). Parameter values:
coupling D = 0.5, transfer T = 0.25.

and 10), although the latter is more accurate for the energy eigenvalues of the second and
higher excited states (see figures 6 and 8). This is due to the fact that for small values of the
coupling constant D, essentially only the lowest two eigenstates are occupied in each parity
subspace. In particular, the main frequency of the oscillations of z(t) is given by the difference
between the two ground state energiesE(+)0 andE(−)0 . Since in our DA and RD transformations
we optimize the transformational parameter to minimize the ground state energies, the latter
are more accurate than in the case of the purely displacive transformation, where we have
set δ = D. In this parameter regime the improvement of the DA and RD transformations
over the purely displacive one is therefore at least partly independent of the ‘anticrossing’ or
‘reflective’ component of the product transformations. However, to reproduce the analytically
correct perturbation result a pure displacive transformation is not sufficient, as explained in
the text following equations (36) and (43).

The semiclassical result (figure 11) is even more inaccurate than the displacive one.
For T = 0.25 andD = 2 (strong coupling), the evolution is presented in figure 12 for the

DA transformation, in figure 13 for the purely displacive transformation, and in figure 14 for
the semiclassical approximation. Again the RD result is omitted since it is almost identical to
the displacive one. In this parameter regime the DA and the purely displacive transformation
appear to capture different aspects of the exact result. While the displacive transformation
correctly reproduces the overall behaviour of the exact curve, the internal short-time structure
is completely missing. The DA transformation, on the other hand, is less accurate with respect
to the overall behaviour, but is better in reproducing the short-time structures.

Finally it is seen that the semiclassical approximation is even qualitatively wrong for this
combination of parameters.

6.2. Large transfer regime

6.2.1. Energy curves For the large transfer regime (T = 2.5) the D-dependency of the
eigenenergies is shown
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Figure 12. Occupation probability difference as a function of time. Comparison of the exact
numerical solution (solid line) with the DA result (dashed line). Parameter values: coupling
D = 2, transfer T = 0.25.
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Figure 13. Occupation probability difference as a function of time. Comparison of the exact
numerical solution (solid line) with the purely displacive result (dashed line). Parameter values:
coupling D = 2, transfer T = 0.25.

• for the purely displacive transformation in figures 15 (low states, n < 15) and 16 (high
states, n ≈ 100),

• for the DA transformation in figures 17 (low states) and 18 (high states).

From the curves it can be seen that in the case of the low states for values of the coupling
parameter up to D ≈ 1.5 the DA results are significantly more accurate than the purely
displacive ones, whereas for larger values of D both transformations have approximately the
same accuracy. In the case of the high states the situation is different: For D < 0.5 the DA
transformation is again decisively better than the displacive one, but for 0.5 < D < 2.5 it
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Figure 14. Occupation probability difference as a function of time. Comparison of the exact
numerical solution (solid line) with the semiclassical result (dashed line). Parameter values:
coupling D = 2, transfer T = 0.25.
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Figure 15. Comparison of the eigenvalues generated via the purely displacive transformation as
a function of D with the numerically exact curves for T = 2.5 and p = +1. Solid lines: exact
numerical diagonalization, dashed lines: purely displacive result.

is the purely displacive transformation which yields the better results. The reason for this
behaviour is that the minimization of the ground states energy for the DA transformation
leads to a discontinuity of the displacement parameter δ at D ≈ 2.5, which is obvious from
figures 17 and 18. In fact, forD < 2.5 δ is approximately equal to its analytical low-coupling
value δ = D/(1 + 2T ), and for D > 2.5 we have δ ≈ D.
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Figure 16. Comparison of the eigenvalues generated via the purely displacive transformation as
a function of D with the numerically exact curves for T = 2.5 and p = +1. Solid lines: exact
numerical diagonalization, dashed lines: purely displacive result.
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Figure 17. Comparison of the eigenvalues generated via the DA transformation as a function
of D with the numerically exact curves for T = 2.5 and p = +1. Solid lines: exact numerical
diagonalization, dashed lines: DA result.

To improve the results for the higher energy eigenvalues we move the δ discontinuity to
D = 0.5, i.e., we regard δ as a given function of D of the form

δ =
{
D/(1 + 2T ) for D < 0.5

D for D � 0.5
. (80)

The results of this modified displacive-anticrossing (MDA) transformation are shown in
figure 19 (for the low states) and figure 20 (for the high states). For the high states we now
have a good agreement between the approximate and the exact energy values. However, for
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Figure 18. Comparison of the eigenvalues generated via the DA transformation as a function
of D with the numerically exact curves for T = 2.5 and p = +1. Solid lines: exact numerical
diagonalization, dashed lines: DA result.

the low energy states in the region 0.5 � D � 2.5 the accuracy is now lower than in the case
of the original DA transformation, although the results are at least as good as for the displacive
transformation.
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Figure 19. Comparison of the eigenvalues generated via the modified DA transformation as a
function of D with the numerically exact curves for T = 2.5 and p = +1. Solid lines: exact
numerical diagonalization, dashed lines: modified DA result.

We should take note here of an important flexibility of the DA transformation with respect
to the choice of the parameter δ. If it happens that a specific fixed T –D-value combination
makes the original DA choice for δ unsuitable, say for D = 1, T = 2.5, we may switch to
another δ choice, such that the DA generation of the eigenbase is again good.
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Figure 20. Comparison of the eigenvalues generated via the modified DA transformation as a
function of D with the numerically exact curves for T = 2.5 and p = +1. Solid lines: exact
numerical diagonalization, dashed lines: modified DA result.
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Figure 21. Occupation probability difference as a function of time. Comparison of the exact
numerical solution with the DA result. The two results are indiscernible on the scale of this figure.
Parameter values: coupling D = 0.5, transfer T = 2.5.

The RD result is omitted since it shows larger deviations from the exact result than the
DA or the purely displacive transformations.

6.2.2. Temporal evolution For T = 2.5 and D = 0.5 (weak coupling) the result for the
occupational difference z(t) is shown in figure 21 for the DA transformation, in figure 22 for
the displacive transformation and in figure 23 for the semiclassical approximation. Here the
DA result is quantitatively correct; there is no visible difference between the DA and the exact
curves. The same is true for the RD transformation, which is therefore not shown here. On the
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other hand, the purely displacive transformation yields large deviations from the exact result,
even larger than in the case of the semiclassical approximation. In this parameter regime the
simple displacive transformation often used in the literature (see e.g. Steib et al [19]) clearly
cannot reproduce the correct result, neither for the energy values nor for the temporal evolution.
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Figure 22. Occupation probability difference as a function of time. Comparison of the exact
numerical solution (solid line) with the purely displacive result (dashed line). Parameter values:
coupling D = 0.5, transfer T = 2.5.
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Figure 23. Occupation probability difference as a function of time. Comparison of the exact
numerical solution (solid line) with the semiclassical result (dashed line). Parameter values:
coupling D = 0.5, transfer T = 2.5.

For T = 2.5 and D = 2 (strong coupling), the DA result (figure 24) approximately
reproduces the correct base frequency of the oscillations of z(t), although the fluctuations
of the amplitude are inaccurate. For the purely displacive transformation (figure 25), on the
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other hand, the result is not only worse, but even qualitatively wrong. The semiclassical
approximation (figure 26), on the other hand, shows the correct frequency, but the amplitude
fluctuations are completely absent. Finally the RD result (figure 27) is better than the purely
displacive one, but not as good as the DA result. Thus, in the large transfer and strong coupling
regime only the DA transformation leads to a result which is semiquantitatively correct.
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Figure 24. Occupation probability difference as a function of time. Comparison of the exact
numerical solution (solid line) with the DA result (dashed line). Parameter values: coupling
D = 2, transfer T = 2.5.
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Figure 25. Occupation probability difference as a function of time. Comparison of the exact
numerical solution (solid line) with the purely displacive result (dashed line). Parameter values:
coupling D = 2, transfer T = 2.5.
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Figure 26. Occupation probability difference as a function of time. Comparison of the exact
numerical solution (solid line) with the semiclassical result (dashed line). Parameter values:
coupling D = 2, transfer T = 2.5.
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Figure 27. Occupation probability difference as a function of time. Comparison of the exact
numerical solution (solid line) with the RD result (dashed line). Parameter values: coupling
D = 2, transfer T = 2.5.

7. Conclusions and perspectives

We have presented a new method for investigating the temporal evolution of coupled excitonic-
oscillatory systems, which is based on unitary transformations. In this method the two
antagonistic tendencies of the coupled system (excitonic transfer versus polaronic localization)
are handled by a unitary transformation of product form, in which each constituent accounts
for one of the two tendencies.

Specifically we have considered two products of unitary operators, one of which being
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of RD type and the other of DA type. In both cases we respectively have chosen the unitary
operator factor of the most simple type, i.e. of a one parameter type. The parameters of
the transformation have been optionally fixed by requiring an optimal diagonalization in the
energetic sense. We have also indicated the possibilities of other parameter choices. The
concept is such that the complete sequence of eigenvalues and eigenvectors of the Hamiltonian
can be simultaneously generated by a transformation depending on only two parameters,
without requiring an exact numerical diagonalization of the Hamiltonian.

The RD and the DA transformations already in their most simple forms have the virtue
of yielding exact analytic diagonalization in the two opposing limits (D → 0, T arbitrary and
T → 0, D arbitrary, where T , D respectively denote the transfer and coupling parameters
of the Hamiltonian). In the former limit they satisfy the Fröhlich condition and are therefore
equivalent to second-order perturbation theory.

In particular both our RD and our DA transformation reproduce correctly the ‘Debye–
Waller peculiarity’ inherent in all exciton(electron)–phonon systems. This ‘peculiarity’
denotes the phenomenon that by means of the exciton–phonon coupling all odd power terms
in the transfer parameter T are exponentially screened (‘Debye–Waller screening’) whereas
the even power terms are not. This virtue renders the RD and DA transformations superior to
other product transformations, such as e.g. a transformation of displacive-antisqueezing type,
which frequently has been employed. Naturally our transformations are also superior to the
purely displacive transformation, which is a limiting case of both our transformations, and
which frequently has been used in the literature.

For comparison with exact results and with the semiclassical approximation we have
applied our method to an archetypal two-site system, which can be also solved by numerical
diagonalization. As expected from a perturbative analysis, the best results were obtained in
the two opposite limiting cases T → 0 and T → ∞ (for fixedD) or in the two opposing limits
D → 0 and D → ∞ (for fixed T ).

Regarding the reproduction of the full eigenvalue spectrum, the DA transformation turns
out to be best, yielding a semiquantitative reproduction in practically the full T –D-plane.
There may, however, be certain T –D-values for which an applied optimization procedure of
the transformation parameters (δ, α) is unsuitable. In these cases δ and α have to be chosen in
a more suitable way.

Another outcome of our analysis is the critical evaluation of a Lang–Firsov type of
transformation, which in our Fulton–Gouterman transcription of the Hamiltonian amounts to a
purely displacive transformation (in oscillatory space). This type of transformation is the one
most frequently used in earlier literature. It turns out that this transformation is only suitable
for small transfer parameters T , whereas in other T –D regimes it may even be qualitatively
wrong, or be even worse than the semiclassical approximation.

The semiclassical approximation, on the other hand, fails even qualitatively in regions of
small T , and remains less accurate than the RD and DA results for larger T . In particular
the symmetry-breaking behaviour that appears in the semiclassical approximation for small T
andD, in contradiction to the exact result, is absent in the unitary transformation calculations.

Finally, we turn to the quality of our RD transformation. This transformation turns out
to be almost as good as the DA transformation. Its shortcoming is revealed mainly in the
energetic reproduction and it consists in its incapacity to inhibit the crossing of energy lines
the latter for instance are discussed as functions of the Hamiltonian parameters (T orD). This
results in a divergent behaviour for some critical T orD value (T = Tc orD = Dc). However,
if such a situation appears, one has the possibility of changing the choice of the transformation
parameters such that the divergency is shifted to another location in the T –D-plane. It is
therefore why the RD transformation is a good candidate for the generation of the eigenbase
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of the Hamiltonian for any given values of T and D. We emphasize this, since it is the RD
transformation which delivers the key for the generalization of our method (see below).

The aim of the present work has been to test the usability of the unitary transformation
method for the ‘dimer–oscillator’ model. The next step would be to apply it to more
complicated systems like extended, translationally invariant exciton–phonon systems, for
which a numerically exact solution is not possible. Since the Fulton–Gouterman transformation
can be generalized to such systems [31], a transformation similar to the RD one used in this
paper may be employed to generate the approximate eigenstates of the Hamiltonian. In the case
of a one-dimensional exciton–phonon chain the exponent Sr (equation (26)) of the reflective
factor has to be replaced by an operator of translational type:

S
(k)
t = u(k)1 (Pq,Qq)R1 + u(k)−1(Pq,Qq)R−1 (81)

where k denotes the wavevector of the total eigenfunction, {Pq,Qq} the phonon variables
and R±1 a translational operator with the property R±1Qq = e±iqQqR±1. (For the Cartesian
phonon coordinates,

Qm = (N + 1)−1/2
∑
q

eiqmQq (82)

we correspondingly have the rule R±1Qm = Qm±1R±1.) The functional forms u(k)±1(Pq,Qq)

must be chosen in a suitable manner.

Appendix: The displacive-antisqueezing transformation

In this appendix we consider an alternative transformation, composed of a displacive
transformation and an antisqueezing transformation:

U = Ua(α)Ud(δ) = exp
(−iα(PQ +QP)

)
exp(iδP ). (A.1)

This transformation has previously been applied to the dimer model by Sonnek et al [20],
who found that it yields acceptable results for the ground state in the weak-coupling regime
only. Here we will discuss on the one hand, whether these result can be carried over to excited
states, and on the other, whether the transformation is analytically appropriate for the weak
transfer case (T  1, D arbitrary) also.

The transformed Hamiltonian reads

H̃
(p)

FG = U †H
(p)

FG U = 1
2 [e−4αP 2 + e4α(Q− δ)2] + e2αD(Q− δ)− pTRQe2iδP (A.2)

and the energy expectation value in the ground state is

E
(p)

0 = 1
2 [δ2e4α + cosh(4α)] −Dδe2α − pT e−δ2

. (A.3)

Appendix A.1. Weak coupling regime

As we will see later, in the weak coupling regime (D  1) δ is of orderD and α of orderD2.
Therefore we expand H̃ (p)FG up to terms quadratic in δ and linear in α:

H̃
(p)

FG = 1
2 (P

2 +Q2)− pTRQ + (D − δ)Q + 2ipT δPRQ + 2α(Q2 − P 2)

−Dδ + 1
2δ

2 + 2pT δ2P 2RQ +O(δ3, αδ, α2). (A.4)

Applying H̃ (p)FG to the ground state |φ(0)0 〉 yields

H̃
(p)

FG = (
1
2 + pT (1 − δ2)

) |φ(0)0 〉 +
1√
2

[D − (1 + 2pT )δ]|φ(0)1 〉

+
√

2(2α − pT δ2)|φ(0)2 〉 +O(δ3, αδ, α2). (A.5)
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Setting δ = D/(1 + 2pT ), α = 1
2pT δ

2 makes |φ(0)0 〉 an eigenvector of H̃ (p)FG up to O(D2).

However, when the same Hamiltonian is applied to state |φ(0)1 〉, there appear non-diagonal terms
of order D. So the displacive-antisqueezing transformation can diagonalize the Hamiltonian
only for the ground state of the system. This is in contrast to the RD and the DA transformations,
which in the weak coupling regime fulfill the Fröhlich condition and therefore diagonalize the
Hamiltonian for all states (see subsection 3.1.3).

Appendix A.2. Weak transfer regime

In the case of vanishing transfer (T = 0), exact diagonalization is obtained for δ = D, α = 0.
Therefore we set δ = D + δ′ and expand E(p)0 up to quadratic terms in α and δ′:

E
(p)

0 = 1
2 − 1

2D
2 − pT e−D2

+ 2pTDe−D2
δ′ +

(
1
2 − pT (2D2 − 1)e−D2

)
δ′2

+2Dαδ′ + 2(D2 + 1)α2. (A.6)

The minimal value of E(p)0 is obtained for

α = pTD2e−D2

1 − 2pT (2D2 − 1)(D2 + 1)e−D2 (A.7)

δ′ = − 2pTDe−D2

1/(D2 + 1)− 2pT (2D2 − 1)e−D2 . (A.8)

If the coupling is strong (D � 1), terms containing the Debye–Waller factor e−D2
can be

neglected compared to algebraic terms, and we obtain

α = pTD2e−D2
(A.9)

δ′ = −2pTD(D2 + 1)e−D2
(A.10)

E
(p)

0 = 1
2 − 1

2D
2 − e−D2

pT + 2D2(1 −D2)e−2D2
T 2 +O(T 3). (A.11)

Thus the displacive-antisqueezing transformation yields an even stronger Debye–Waller
screening in the T 2 term of the ground state energy. However, as we have stated in section 5,
the correct analytic behaviour should not contain a Debye–Waller screening exp(−D2) in
the even power terms of T (Debye–Waller peculiarity). Thus the displacive-antisqueezing
transformation is unable to reproduce the correct analytic result.
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